Fully Automatic Segmentation of Hip CT Images via Random Forest Regression-Based Atlas Selection and Optimal Graph Search-Based Surface Detection

نویسندگان

  • Chengwen Chu
  • Junjie Bai
  • Li Liu
  • Xiaodong Wu
  • Guoyan Zheng
چکیده

Automatic extraction of surface models of both pelvis and proximal femur of a hip joint from 3D CT images is an important and challenging task for computer assisted diagnosis and planning of periacetabular osteotomy (PAO). Due to the narrowness of hip joint space, the adjacent surfaces of the acetabulum and the femoral head are hardly distinguishable from each other in the target CT images. This paper presents a fully automatic method for segmenting hip CT images using random forest (RF) regression-based atlas selection and optimal graph search-based surface detection. The two fundamental contributions of our method are: 1) An efficient RF regression framework is developed for a fast and accurate landmark detection from the hip CT images. The detected landmarks allow for not only a robust and accurate initialization of the atlases within the target image space but also an effective selection of a subset of atlases for a fast atlas-based segmentation; and 2) 3-D graph theory-based optimal surface detection is used to refine the extraction of the surfaces of the acetabulum and the femoral head with the ultimate goal to preserve hip joint structure and to avoid penetration between the two extracted surfaces. Validation on 30 hip CT images shows that our method achieves high performance in segmenting pelvis, left proximal femur, and right proximal femur with an average accuracy of 0.56 mm, 0.61 mm, and 0.57 mm, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method

In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the vote...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

A novel atlas-selection approach for multiple atlas segmentation based on Manifold Learning and Random Forests using Multi-Scale Image Patches

Atlas-based segmentation is a frequently used approach in medical imaging and multi atlas-based segmentation (MABS) has achieved great success for various applications. In order to simultaneously exploit the capabilities of MABS, limit execution time and maintain robustness, it is preferable to select a (preferably small) subset of atlases to be used for segmentation. In this work, an atlas sel...

متن کامل

Fully automatic liver segmentation using probability atlas registration

Liver segmentation from abdominal Computer Tomography (CT) images plays an important role in liver disease diagnosis as well as liver surgical planning. In this paper, a hybrid approach is proposed for fully automatic liver position search and liver segmentation in CT images. First liver intensity range is detected based on prior knowledge of liver volume. Then region of interest (ROI) is extra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014